Online appendix: “IRT models for

expert-coded panel data”

A Freedom from political killings question

Question: Is there freedom from political killings?

Clarification: Political killings are killings by the state or its agents without due process
of law for the purpose of eliminating political opponents. These killings are the result of
deliberate use of lethal force by the police, security forces, prison officials, or other agents
of the state (including paramilitary groups).

Responses:

1: Not respected by public authorities. Political killings are practiced systematically
and they are typically incited and approved by top leaders of government.

2: Weakly respected by public authorities. Political killings are practiced frequently and
top leaders of government are not actively working to prevent them.

3: Somewhat respected by public authorities. Political killings are practiced occasionally
but they are typically not incited and approved by top leaders of government.

4: Mostly respected by public authorities. Political killings are practiced in a few isolated
cases but they are not incited or approved by top leaders of government.

5: Fully respected by public authorities. Political killings are non-existent.

Figure A.1: V-Dem Question 10.5, Freedom from Political Killings.

B Data on the characteristics of expert coders

Freedom from political killings is a variable with great variation in expert characteristics.
Among the 1,171 unique experts who coded these data there are 164 unique countries-of-
birth, 158 unique countries-of-residence, and 128 countries-of-education. Sixty-two percent
of the experts hold a PhD, 27 percent an MA, three percent a professional degree (e.g. MD,

JD), seven percent a BA or equivalent, and less than one percent just a secondary level



of education or post-secondary vocational training. Sixty-one percent of experts work at a
university, 13 percent at an NGO, seven percent are self-employed, six percent are students,
three percent work in the private sector, four percent work for a government organ, and 2
percent work for a state-owned enterprise. Twenty-seven percent of experts are female, and
the mean age in 2014 was 45. Given this wide variation in backgrounds, there is strong
reason to expect that experts would vary in their perceptions of the latent concept.

In terms of variation in expert reliability, experts vary along a variety of factors that
may proxy their average expertise. First, there is variation among experts in terms of the
number of countries and country-years they code. On average, experts code approximately
two unique countries, with a range from one to 29 countries. The average expert codes 78
(sd = 65) country-years. Given that experts may become less reliable as they code countries
with which they are less familiar, and may experience fatigue the more country-years they
code, this variation should yield variance in expert reliability.

Experts also evince variation in the degree to which they vary their codings: the average
standard deviation in coding is 0.71 (sd = 0.54). While there are many valid reasons why
an expert may not vary her coding (e.g. an expert could have only coded countries that did
not vary greatly in their scores, such as Switzerland), in many other cases coding variation
clearly measures the degree to which an expert was attentive to changes in her country and

thus her reliability.

C Bayesian A—M model

Aldrich-McKelvey (A-M) scaling provides an alternative method for converting ordinal data
to a latent scale. A-M performs a linear scaling of ordinal data, and accounts for DIF
using expert-specific intercept and slope parameters; in Bayesian implementations it can
also account for variation in expert reliability in the form of stochastic error variance with

an expert-specific variance parameter. We follow Hare et al. (2015) in developing a Bayesian



A-M model (BAM) based on the likelihood in equation [C.1]

Yetr ~~ N(,uctra Tr)
(1)

Hetr = Oy + ﬁrzct

Here a,., B, and 7, are expert-specific intercept, slope and variance parameters. Thus,
BAM replaces the k expert-specific difficulty parameters in the most general threshold-based
IRT framework with linear intercept and slope parameters. The expert-specific variance
parameter is analogous to the discrimination parameter in an IRT model; both measure
rater-specific error variance.

Note that Hare et al. (2015) estimate both the observation and coder precision parame-
ters. But since most country-years in our data have only a handful of coders, this approach

is not tenable here.ﬁ Instead, we estimate 7, as follows:

7t~ T (v, w)

v~ T(1,1) (C.2)

w~TI(1,1)

For the same reason of data sparsity, we eschew the standard practice of assigning model
parameters vague uniform priors. Instead, we assign o, a N'(0,5) prior and 3, a Log-Normal
prior, In(f,) ~ N(0,In]2]).

While more flexible than the intercept-only IRT approach, this model is less general

2While parameters appeared to converge across chains in testing runs, according to the
standard Gelman-Rubin diagnostic, these runs exhibited large numbers of divergent transi-
tions, a potentially strong indicator of lack of convergence for models fit with Stan. While we
fit only a handful of models with this general prior specification, they recovered true values

at rates almost identical to the other A—-M specifications that we present here.



than models that incorporate threshold DIF: it assumes that DIF only occurs through linear
transformations on the latent scale, not non-linearly, at individual thresholds. Fully ordinal
IRT models can capture classes of DIF that are assumed away by BAM, and therefore rely on
less restrictive assumptions about DIF’s functional form. Thus, such models are more robust
in principle. On the other hand, BAM’s simpler parameterization might provide advantages
when dealing with sparse data, since it demands less information than ordinal IRT.

Finally, because we are interested in comparing our hierarchical IRT specifications to
currently-used approaches, we focus on a non-hierarchical BAM implementation. To ensure
that this distinction does not drive differences between IRT and A-M performance, we also
fit a handful of hierarchical A-M models (HAM), as a robustness check.

Our HAM specification closely follows the BAM model. We adopt the same likelihood

function, but alter the priors such that

B, ~ N(B,,0.11)
Be, ~ N (B,,0.11) (C.3)

r

In(8,) ~ N'(1.5,2),

a, ~ N(a.,,0.13)

e, ~ N(a,,0.13) (C.4)
a, ~N(3.1,4),
and
Tt~ T(1,1). (C.5)

The prior specifications for the o and  parameters follow hierarchical specifications anal-

ogous to those for the threshold parameters in the IRT models. Prior means and variances



Bridging DIF Type DIF Level Rel. Var. MSE p 7 95% HPD Div. Trans.

V-Dem  None Fixed 0.21 0.89 0.71 0.89 0
V-Dem  Intercept  High High 0.61 0.67 0.49 0.67 10
V-Dem = Threshold High High 0.44 0.76 0.56 0.82 0
V-Dem  Truncated High High 0.46 0.75 0.56 0.8 0
High Intercept  High High 0.31 0.84 0.67 0.69 217
High Threshold High High 0.16 0.92 0.76 0.87 12
High Truncated High High 0.20 090 0.73 0.81 6
None Intercept  High High 0.68 0.63 0.47 0.64 0
None Threshold High High 0.39 0.78 0.59 0.87 0
None Truncated High High 0.53 0.71 0.52 0.74 635

Table C.1: Hierarchical A—M Performance

are based on actual simulated values in threshold-based simulations with linear threshold
steps. In other words, we based these priors on true simulated values, under the A—M linear-
ity assumption. We simplify the prior on 7 in order to reduce estimation issues. This prior
is less flexible than that in the other A—M model, but places substantial mass over the true
7 values in the simulated data. In sum, this hierarchical specification is consistent with the
actual simulation process, potentially providing substantial advantages to the HAM model.

Table presents simulation performance statistics for a subset of simulated datasets to
which we fit HAM models.@ In general, the hierarchical specification does little to improve
model fits over vanilla A-M results. While the HAM substantially improves fits for V-Dem
bridged data with no DIF and fixed reliability, it generally produces similar performance to
the vanilla A-M models. Indeed, the only other substantive improvement in MSE was for
no-bridging datasets with high threshold DIF and high reliability variance, although this
HAM still under-performed IRT approaches in these data. Nonetheless, adding hierarchical
parameters appears to improve HPD interval coverage across most specifications, although

not to the extent that HAM models tend to outperform IRT models on this dimension.

24To provide a reasonable robustness check, while conserving computational resources, we
focus primarily on high DIF /high reliability variance datasets, across different bridging and

DIF specifications.



We experienced some computational difficulties fitting the HAM model to some of our
simulated datasets. In particular, four of the models produced divergent transitions after
burnin. Results from these models may be misleading. Notably, the Gelman-Rubin diag-
nostic was inconsistent with convergence for the truncated dataset with no bridging, which
produced 635 divergent transitions. Even with hierarchical parameters, A-M models are

prone to convergence issues when applied to these data.

D STAN code

D.1 Model without DIF or reliability parameters

data {
int<lower=2> K;//categories
int<lower=0> J; // Coders
int<lower=0> N; // N
int<lower=0> C; // countries
int<lower=-1,upper=K> wdatal[N,J];// data
int<lower=1,upper=C> cdatalJ]; // j country indices

parameters {

vector[N] Z;

ordered[K-1] gamma; // world-level cutpoints
}

model {
vector [K] p;
real left;
real right;

for(i in 1:N) {
Z[i] ~ normal(0, 1);
}

for (j in 1:J) {
for (i in 1:N) if (wdatali,j] !'= -1) {
left <- 0;



for (k in 1:(K-1)) {
right <- left;
left <- Phi_approx(gammalk] - Z[i]);
plk] <- left - right;

}

plK] <= 1.0 - left;

wdatal[i,j] ~ categorical(p);

D.2 Model without DIF and with reliability parameters

data {
int<lower=2> K;//categories
int<lower=0> J; // Coders
int<lower=0> N; // N
int<lower=0> C; // countries
int<lower=-1,upper=K> wdata[N,J];// data
int<lower=1,upper=C> cdatalJ]; // j country indices

parameters {
vector[N] Z;
ordered[K-1] gamma; // world-level cutpoints
real<lower=0> betal[J]; //reliability

}

model {
vector [K] p;
real left;
real right;

for(i in 1:N) {
Z[i] ~ normal(0, 1);
}

for (j in 1:J) {
betalj] ~ normal(1,1)T[0,];
for (i in 1:N) if (wdatali,j] !'= -1) {
left <- 0;
for (k in 1:(K-1)) {
right <- left;
left <- Phi_approx(gammalk] - betaljl*Z[i]);
plk] <- left - right;



}
plK]l <- 1.0 - left;
wdatal[i,j] = categorical(p);
}
}
}

D.3 Model with intercept DIF and reliability parameters

data {
int<lower=2> K;//categories
int<lower=0> J; // Coders
int<lower=0> N; // N
int<lower=0> C; // countries
int<lower=-1,upper=K> wdatal[N,J];// data
int<lower=1,upper=C> cdatalJ]; // j country indices

parameters {
vector[N] Z;
ordered[K-1] gamma; // world-level cutpoints
vector [C] epsilon_c; // country-level agreement
real epsilon[J]; //agreement
real<lower=0> betal[J]; //agreement

model {
vector [K] p;
real left;
real right;

for(i in 1:N) {
Z[i] ~ normal(0, 1);
}

for (c in 1:C) {
epsilon_c[c] ~ normal(0, .5); // row-access of gamma_c

¥

for (j in 1:J7) {
epsilon[j] ~ normal(epsilon_c[cdataljl], .5); // note row-access
betalj] = normal(1,1)T[O0,];
for (i in 1:N) if (wdatali,j] '= -1) {
left <- 0;
for (k in 1:(K-1)) {



right <- left;
left <- Phi_approx(gammalk] - epsilon[j] - betaljl*Z[i]);
plk] <- left - right;

}

plK] <= 1.0 - left;

wdatal[i,j] = categorical(p);

}
}
}

D.4 Model with threshold DIF and reliability parameters

data {
int<lower=2> K;//categories
int<lower=0> J; // Coders
int<lower=0> N; // N
int<lower=0> C; // countries
int<lower=-1,upper=K> wdatal[N,J];// data
int<lower=1,upper=C> cdatalJ]; // j country indices

parameters {
vector [N] Z;
ordered[K-1] gammal[J];
vector [K-1] gamma_mu; // world-level cutpoints
matrix[C, (K-1)] gamma_c; // country-level cuts, rows are countries
real<lower=0> betal[J]; //reliability score

model {
vector [K] p;
real left;
real right;

for(i in 1:N) {
Z[i] ~ normal(0, 1);
}

gamma_mu ~ uniform(-2, 2);

for (¢ in 1:C) {
gamma_c[c] ~ normal (gamma_mu, .25); // row-access of gamma_c

3

for (j in 1:J) {
gamma[j] ~ normal(gamma_c[cdataljl], .25); // note row-access



betal[j] ~ normal(1,1)T[0,];

for (i in 1:N) if (wdatali,j] !'= -1) {
left <- 0;
for (k in 1:(K-1)) {
right <- left;
left <- Phi_approx(gammalj,k] - Z[ilxbetaljl);
plk] <- left - right;
}
plK] <= 1.0 - left;
wdatal[i,j] = categorical(p);
}
}
}

D.5 BAM model

data {
int<lower=0> J; // Coders
int<lower=0> N; // N
int<lower=-1,upper=5> wdatal[N,J];// data

parameters {
vector[N] Z;
real<lower=0> taulJ]; //reliability
real<lower=0> betal[J]; //reliability
vector[J] alpha; //reliability
real<lower=0> a; //reliability
real<lower=0> b; //reliability

}

model {

a ~ gamma(1l,1);
b ~ gamma(1,1);
for(i in 1:N) {
Z[i] ~ normal(0, 1);
}

for (j in 1:J) {
betalj] ~ lognormal(0,log(2));
alphal[j] ~ normal(0,5);
taulj] ~ gamma(a,b);

10



for (i in 1:N) if (wdatali,j] '= -1) {
wdatal[i,j] ~ normal(alphalj] + betaljl*z[i], 1/tauljl);
}
}
}

D.6 HAM model

data {
int<lower=0> J; // Coders
int<lower=0> N; // N
int<lower=0> C; // countries
int<lower=-1,upper=5> wdatal[N,J];// data
int<lower=1,upper=C> cdatalJ]; // j country indices

parameters {
vector [N] Z;
real<lower=0> taul[J]; //reliability
real<lower=0> betalJ];
real<lower=0> beta_c[C];
real<lower=0> beta_mu;
vector[J] alpha;
vector [C] alpha_c;
real alpha_mu;
//real<lower=0> a;
//real<lower=0> b;

model {

//a ~ gamma(l,1);
//b ~ gamma(1,1);
for(i in 1:N) {

Z[i] ~ normal(0, 1);
}

alpha_mu ~ normal(3.1, 4);
beta_mu ~ lognormal(log(1.5), log(2));

for (¢ in 1:C) {
alpha_c[c] ~ normal(alpha_mu, 0.11);
beta_c[c] ~ normal(beta_mu, 0.13);

}

11



for (j in 1:J) {
betalj] ~ normal(beta_c[cdatal[jl]l, 0.11);
alphal[j] ~ normal(alpha_c[cdatal[jl]l, 0.13);
//taulj] ~ gamma(a,b);
tauljl ~ gamma(1,1);

for (i in 1:N) if (wdatali,j] '= -1) {
wdatali,j] = normal(alphalj]l + betaljl*Z[i], 1/tauljl);
X
b
+

E Additional illustrative cases of different IRT models

12
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Figure E.1: Different models of freedom from political killings in Germany
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Figure E.2: Different models of freedom from political killings in Canada
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F Simulation algorithm

1. Estimate true value ¢ for country-year ct by taking the mean of expert codings for each
country-year, then normalizing across country-years.

2. Simulate reliability and agreement values

e Simulate reliability £ for expert r
— No variation g, = =1
— Medium variation: f, ~ N (1,0.5)
— High variation: 8, ~ N (1,1)

e Simulate expert agreement parameters

— Perfect agreement
% Toiosa = Y1234 = (—0.88,—0.31,0.14, 0.83)
¥ Kp=Kk=0
— Simulate intercept parameter x for expert r
(a) Simulate s for main country-coded ¢,
* Medium variation: £ ~ N(0,0.5)
x High variation: " ~ N(0,1)
(b) Simulate x for expert r
x Medium variation: , ~ N (k,0.5)
x High variation: k, ~ N (k1)
(c) Create expert thresholds with formula 7, = v, + &,
— Simulate threshold parameters 7 for expert r and threshold k£, kK = 0
(a) Simulate 7 for main country-coded ¢,
* Medium variation: 7. ~ N (7, 0.25)
« High variation: 75" ~ N (7, 1)
(b) Order 7"
(c¢) Simulate 7 for expert r
* Medium variation: 7, ~ N (75, 0.25)
« High variation: 7,5 ~ N (7.7, 1)
(d) Order 7,4
— Simulate truncated threshold parameters 7 for expert r and threshold k, kK = 0

(a) Assign main country-coded ¢, indicator (" ~ Bernoulli(0.5) for positive
or negative truncation

(b) Simulate 7 for main country-coded ¢,
* Medium variation: 77" ~ N (74, 0.25)
I ¢ =1, min(7,) = W
- If ¢ =0, max(7, 1) =
« High variation: 75" ~ N (7x, 1), truncated as with medium variation

18



(c) Order 7"
(d) Assign expert r indicator (., ~ Bernoulli(0.5) for positive or negative
truncation

(e) Simulate 7 for expert r
* Medium variation: 7, ~ N (757, 0.25)
- If ¢ =1, min(ry) = 757
- If ¢, =0, max(1y) = 7"
« High variation: 7,5 ~ N (7.7, 1), truncated as with medium variation
(f) Order 7,

3. Create perceived latent values A for expert r and country year ¢t with equation \,..; =

/8'/‘ gct

4. Observed score Y.t ~ Categorical(prret), where prret = O(Trk — Aret) — O(Tr k-1 — Avet)
and ¢ is the CDF of a normal distribution

e Simulate observed scores for all permutations of § (no variation, medium varia-
tion, and high variation) and 7 (perfect agreement, medium and high intercept
variation, medium and high threshold variance, and medium and high truncated
threshold variance).

e Total number of permutations of simulated data: 3 x (1+2+2+2) =21

5. Repeat thrice to create three unique data sets with 21 combinations

G Additional model fit figures

G.1 Additional MSE figures
G.1.1 Models with saturated data, all possible bridging

Figure G.1: MSE estimates across simulations with no DIF, using simulated data with all
possible bridging.
Discrimination = 1 Discrimination ~ A/(1,0.5) Discrimination ~ A (1,1)

Aldrich-McKelvey -

Intercept DIF{ | @ * @

Threshold DIF- @
Model Reliability
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Figure G.2: MSE estimates across simulations with fixed discrimination, using saturated
data with all possible bridging.
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G.2 Pearson correlation estimates across simulations
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Figure G.4: Data with V-Dem structure

Discrimination = 1

Discrimination ~ N(0,0.5)

Discrimination ~ A(0,1)
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Figure G.5: Saturated data with no bridging
Discrimination ~ N(0,0.5)

Discrimination = 1

Discrimination ~ A(0,1)
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Figure G.6: Saturated data with all possible bridging
Discrimination ~ N(0,0.5)

Discrimination = 1

Discrimination ~ N(0,1)
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G.3 Kendall correlation estimates across simulations
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Figure G.7: Data with V-Dem structure

Discrimination = 1 Discrimination ~ N(0,0.5)

Discrimination ~ A(0,1)
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Figure G.8: Saturated data with no bridging
Discrimination ~ N(0,0.5)

Discrimination = 1

Discrimination ~ A(0,1)
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Figure G.9: Saturated data with all possible bridging

Discrimination = 1

Discrimination ~ N(0,0.5)

Discrimination ~ A(0,1)
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G.4 HPD estimates across simulations
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Figure G.10: Data with V-Dem structure

Discrimination = 1

Discrimination ~ N(0,0.5)

Discrimination ~ A(0,1)
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Figure G.11: Saturated data with no bridging

Discrimination = 1 Discrimination ~ N(0,0.5)

Discrimination ~ A(0,1)
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Figure G.12: Saturated data with all possible bridging
Discrimination ~ N(0,0.5)

Discrimination = 1

Discrimination ~ A(0,1)

® (1 ]
L [ 12
Model Reliability
@ Fixed
Varying » [ )
® ® o ®
(& ] -
» [ 2
- L J e
» ®*>
° 00 ®!e o 9
(] ee L J
e o
» ®
- ® o
o - «
[ B J ( X ) -9
L J @ o0
» L J L J
ko) » ®
L] -
Q) L ] ®
0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9




H Comparison of Cauchy and uniform prior distribu-
tions, V-Dem bridging structure
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