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A Freedom from political killings question

Question: Is there freedom from political killings?
Clarification: Political killings are killings by the state or its agents without due process
of law for the purpose of eliminating political opponents. These killings are the result of
deliberate use of lethal force by the police, security forces, prison officials, or other agents
of the state (including paramilitary groups).
Responses:

1: Not respected by public authorities. Political killings are practiced systematically
and they are typically incited and approved by top leaders of government.

2: Weakly respected by public authorities. Political killings are practiced frequently and
top leaders of government are not actively working to prevent them.

3: Somewhat respected by public authorities. Political killings are practiced occasionally
but they are typically not incited and approved by top leaders of government.

4: Mostly respected by public authorities. Political killings are practiced in a few isolated
cases but they are not incited or approved by top leaders of government.

5: Fully respected by public authorities. Political killings are non-existent.

Figure A.1: V–Dem Question 10.5, Freedom from Political Killings.

B Data on the characteristics of expert coders

Freedom from political killings is a variable with great variation in expert characteristics.

Among the 1,171 unique experts who coded these data there are 164 unique countries-of-

birth, 158 unique countries-of-residence, and 128 countries-of-education. Sixty-two percent

of the experts hold a PhD, 27 percent an MA, three percent a professional degree (e.g. MD,

JD), seven percent a BA or equivalent, and less than one percent just a secondary level
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of education or post-secondary vocational training. Sixty-one percent of experts work at a

university, 13 percent at an NGO, seven percent are self-employed, six percent are students,

three percent work in the private sector, four percent work for a government organ, and 2

percent work for a state-owned enterprise. Twenty-seven percent of experts are female, and

the mean age in 2014 was 45. Given this wide variation in backgrounds, there is strong

reason to expect that experts would vary in their perceptions of the latent concept.

In terms of variation in expert reliability, experts vary along a variety of factors that

may proxy their average expertise. First, there is variation among experts in terms of the

number of countries and country-years they code. On average, experts code approximately

two unique countries, with a range from one to 29 countries. The average expert codes 78

(sd = 65) country-years. Given that experts may become less reliable as they code countries

with which they are less familiar, and may experience fatigue the more country-years they

code, this variation should yield variance in expert reliability.

Experts also evince variation in the degree to which they vary their codings: the average

standard deviation in coding is 0.71 (sd = 0.54). While there are many valid reasons why

an expert may not vary her coding (e.g. an expert could have only coded countries that did

not vary greatly in their scores, such as Switzerland), in many other cases coding variation

clearly measures the degree to which an expert was attentive to changes in her country and

thus her reliability.

C Bayesian A–M model

Aldrich-McKelvey (A–M) scaling provides an alternative method for converting ordinal data

to a latent scale. A–M performs a linear scaling of ordinal data, and accounts for DIF

using expert-specific intercept and slope parameters; in Bayesian implementations it can

also account for variation in expert reliability in the form of stochastic error variance with

an expert-specific variance parameter. We follow Hare et al. (2015) in developing a Bayesian
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A–M model (BAM) based on the likelihood in equation C.1.

yctr ∼ N (µctr, τr)

µctr = αr + βrzct

(C.1)

Here αr, βr and τr are expert-specific intercept, slope and variance parameters. Thus,

BAM replaces the k expert-specific difficulty parameters in the most general threshold-based

IRT framework with linear intercept and slope parameters. The expert-specific variance

parameter is analogous to the discrimination parameter in an IRT model; both measure

rater-specific error variance.

Note that Hare et al. (2015) estimate both the observation and coder precision parame-

ters. But since most country-years in our data have only a handful of coders, this approach

is not tenable here.23 Instead, we estimate τr as follows:

τ−1
r ∼ Γ(υ, ω)

υ ∼ Γ(1, 1)

ω ∼ Γ(1, 1)

(C.2)

For the same reason of data sparsity, we eschew the standard practice of assigning model

parameters vague uniform priors. Instead, we assign αr a N (0, 5) prior and βr a Log-Normal

prior, ln(βr) ∼ N (0, ln[2]).

While more flexible than the intercept-only IRT approach, this model is less general

23While parameters appeared to converge across chains in testing runs, according to the

standard Gelman-Rubin diagnostic, these runs exhibited large numbers of divergent transi-

tions, a potentially strong indicator of lack of convergence for models fit with Stan. While we

fit only a handful of models with this general prior specification, they recovered true values

at rates almost identical to the other A–M specifications that we present here.
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than models that incorporate threshold DIF: it assumes that DIF only occurs through linear

transformations on the latent scale, not non-linearly, at individual thresholds. Fully ordinal

IRT models can capture classes of DIF that are assumed away by BAM, and therefore rely on

less restrictive assumptions about DIF’s functional form. Thus, such models are more robust

in principle. On the other hand, BAM’s simpler parameterization might provide advantages

when dealing with sparse data, since it demands less information than ordinal IRT.

Finally, because we are interested in comparing our hierarchical IRT specifications to

currently-used approaches, we focus on a non-hierarchical BAM implementation. To ensure

that this distinction does not drive differences between IRT and A–M performance, we also

fit a handful of hierarchical A–M models (HAM), as a robustness check.

Our HAM specification closely follows the BAM model. We adopt the same likelihood

function, but alter the priors such that

βr ∼ N (βcr , 0.11)

βcr ∼ N (βµ, 0.11)

ln(βµ) ∼ N (1.5, 2),

(C.3)

αr ∼ N (αcr , 0.13)

αcr ∼ N (αµ, 0.13)

αµ ∼ N (3.1, 4),

(C.4)

and

τ−1
r ∼ Γ(1, 1). (C.5)

The prior specifications for the α and β parameters follow hierarchical specifications anal-

ogous to those for the threshold parameters in the IRT models. Prior means and variances
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Bridging DIF Type DIF Level Rel. Var. MSE ρ τ 95% HPD Div. Trans.

V-Dem None Fixed 0.21 0.89 0.71 0.89 0
V-Dem Intercept High High 0.61 0.67 0.49 0.67 10
V-Dem Threshold High High 0.44 0.76 0.56 0.82 0
V-Dem Truncated High High 0.46 0.75 0.56 0.8 0
High Intercept High High 0.31 0.84 0.67 0.69 217
High Threshold High High 0.16 0.92 0.76 0.87 12
High Truncated High High 0.20 0.90 0.73 0.81 6
None Intercept High High 0.68 0.63 0.47 0.64 0
None Threshold High High 0.39 0.78 0.59 0.87 0
None Truncated High High 0.53 0.71 0.52 0.74 635

Table C.1: Hierarchical A–M Performance

are based on actual simulated values in threshold-based simulations with linear threshold

steps. In other words, we based these priors on true simulated values, under the A–M linear-

ity assumption. We simplify the prior on τ in order to reduce estimation issues. This prior

is less flexible than that in the other A–M model, but places substantial mass over the true

τ values in the simulated data. In sum, this hierarchical specification is consistent with the

actual simulation process, potentially providing substantial advantages to the HAM model.

Table C.1 presents simulation performance statistics for a subset of simulated datasets to

which we fit HAM models.24 In general, the hierarchical specification does little to improve

model fits over vanilla A–M results. While the HAM substantially improves fits for V-Dem

bridged data with no DIF and fixed reliability, it generally produces similar performance to

the vanilla A–M models. Indeed, the only other substantive improvement in MSE was for

no-bridging datasets with high threshold DIF and high reliability variance, although this

HAM still under-performed IRT approaches in these data. Nonetheless, adding hierarchical

parameters appears to improve HPD interval coverage across most specifications, although

not to the extent that HAM models tend to outperform IRT models on this dimension.

24To provide a reasonable robustness check, while conserving computational resources, we

focus primarily on high DIF/high reliability variance datasets, across different bridging and

DIF specifications.
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We experienced some computational difficulties fitting the HAM model to some of our

simulated datasets. In particular, four of the models produced divergent transitions after

burnin. Results from these models may be misleading. Notably, the Gelman-Rubin diag-

nostic was inconsistent with convergence for the truncated dataset with no bridging, which

produced 635 divergent transitions. Even with hierarchical parameters, A–M models are

prone to convergence issues when applied to these data.

D STAN code

D.1 Model without DIF or reliability parameters

data {

int<lower=2> K;//categories

int<lower=0> J; // Coders

int<lower=0> N; // N

int<lower=0> C; // countries

int<lower=-1,upper=K> wdata[N,J];// data

int<lower=1,upper=C> cdata[J]; // j country indices

}

parameters {

vector[N] Z;

ordered[K-1] gamma; // world-level cutpoints

}

model {

vector[K] p;

real left;

real right;

for(i in 1:N) {

Z[i] ~ normal(0, 1);

}

for (j in 1:J) {

for (i in 1:N) if (wdata[i,j] != -1) {

left <- 0;
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for (k in 1:(K-1)) {

right <- left;

left <- Phi_approx(gamma[k] - Z[i]);

p[k] <- left - right;

}

p[K] <- 1.0 - left;

wdata[i,j] ~ categorical(p);

}

}

}

D.2 Model without DIF and with reliability parameters

data {

int<lower=2> K;//categories

int<lower=0> J; // Coders

int<lower=0> N; // N

int<lower=0> C; // countries

int<lower=-1,upper=K> wdata[N,J];// data

int<lower=1,upper=C> cdata[J]; // j country indices

}

parameters {

vector[N] Z;

ordered[K-1] gamma; // world-level cutpoints

real<lower=0> beta[J]; //reliability

}

model {

vector[K] p;

real left;

real right;

for(i in 1:N) {

Z[i] ~ normal(0, 1);

}

for (j in 1:J) {

beta[j] ~ normal(1,1)T[0,];

for (i in 1:N) if (wdata[i,j] != -1) {

left <- 0;

for (k in 1:(K-1)) {

right <- left;

left <- Phi_approx(gamma[k] - beta[j]*Z[i]);

p[k] <- left - right;
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}

p[K] <- 1.0 - left;

wdata[i,j] ~ categorical(p);

}

}

}

D.3 Model with intercept DIF and reliability parameters

data {

int<lower=2> K;//categories

int<lower=0> J; // Coders

int<lower=0> N; // N

int<lower=0> C; // countries

int<lower=-1,upper=K> wdata[N,J];// data

int<lower=1,upper=C> cdata[J]; // j country indices

}

parameters {

vector[N] Z;

ordered[K-1] gamma; // world-level cutpoints

vector[C] epsilon_c; // country-level agreement

real epsilon[J]; //agreement

real<lower=0> beta[J]; //agreement

}

model {

vector[K] p;

real left;

real right;

for(i in 1:N) {

Z[i] ~ normal(0, 1);

}

for (c in 1:C) {

epsilon_c[c] ~ normal(0, .5); // row-access of gamma_c

}

for (j in 1:J) {

epsilon[j] ~ normal(epsilon_c[cdata[j]], .5); // note row-access

beta[j] ~ normal(1,1)T[0,];

for (i in 1:N) if (wdata[i,j] != -1) {

left <- 0;

for (k in 1:(K-1)) {
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right <- left;

left <- Phi_approx(gamma[k] - epsilon[j] - beta[j]*Z[i]);

p[k] <- left - right;

}

p[K] <- 1.0 - left;

wdata[i,j] ~ categorical(p);

}

}

}

D.4 Model with threshold DIF and reliability parameters

data {

int<lower=2> K;//categories

int<lower=0> J; // Coders

int<lower=0> N; // N

int<lower=0> C; // countries

int<lower=-1,upper=K> wdata[N,J];// data

int<lower=1,upper=C> cdata[J]; // j country indices

}

parameters {

vector[N] Z;

ordered[K-1] gamma[J];

vector[K-1] gamma_mu; // world-level cutpoints

matrix[C, (K-1)] gamma_c; // country-level cuts, rows are countries

real<lower=0> beta[J]; //reliability score

}

model {

vector[K] p;

real left;

real right;

for(i in 1:N) {

Z[i] ~ normal(0, 1);

}

gamma_mu ~ uniform(-2, 2);

for (c in 1:C) {

gamma_c[c] ~ normal(gamma_mu, .25); // row-access of gamma_c

}

for (j in 1:J) {

gamma[j] ~ normal(gamma_c[cdata[j]], .25); // note row-access
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beta[j] ~ normal(1,1)T[0,];

for (i in 1:N) if (wdata[i,j] != -1) {

left <- 0;

for (k in 1:(K-1)) {

right <- left;

left <- Phi_approx(gamma[j,k] - Z[i]*beta[j]);

p[k] <- left - right;

}

p[K] <- 1.0 - left;

wdata[i,j] ~ categorical(p);

}

}

}

D.5 BAM model

data {

int<lower=0> J; // Coders

int<lower=0> N; // N

int<lower=-1,upper=5> wdata[N,J];// data

}

parameters {

vector[N] Z;

real<lower=0> tau[J]; //reliability

real<lower=0> beta[J]; //reliability

vector[J] alpha; //reliability

real<lower=0> a; //reliability

real<lower=0> b; //reliability

}

model {

a ~ gamma(1,1);

b ~ gamma(1,1);

for(i in 1:N) {

Z[i] ~ normal(0, 1);

}

for (j in 1:J) {

beta[j] ~ lognormal(0,log(2));

alpha[j] ~ normal(0,5);

tau[j] ~ gamma(a,b);
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for (i in 1:N) if (wdata[i,j] != -1) {

wdata[i,j] ~ normal(alpha[j] + beta[j]*Z[i], 1/tau[j]);

}

}

}

D.6 HAM model

data {

int<lower=0> J; // Coders

int<lower=0> N; // N

int<lower=0> C; // countries

int<lower=-1,upper=5> wdata[N,J];// data

int<lower=1,upper=C> cdata[J]; // j country indices

}

parameters {

vector[N] Z;

real<lower=0> tau[J]; //reliability

real<lower=0> beta[J];

real<lower=0> beta_c[C];

real<lower=0> beta_mu;

vector[J] alpha;

vector[C] alpha_c;

real alpha_mu;

//real<lower=0> a;

//real<lower=0> b;

}

model {

//a ~ gamma(1,1);

//b ~ gamma(1,1);

for(i in 1:N) {

Z[i] ~ normal(0, 1);

}

alpha_mu ~ normal(3.1, 4);

beta_mu ~ lognormal(log(1.5), log(2));

for (c in 1:C) {

alpha_c[c] ~ normal(alpha_mu, 0.11);

beta_c[c] ~ normal(beta_mu, 0.13);

}
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for (j in 1:J) {

beta[j] ~ normal(beta_c[cdata[j]], 0.11);

alpha[j] ~ normal(alpha_c[cdata[j]], 0.13);

//tau[j] ~ gamma(a,b);

tau[j] ~ gamma(1,1);

for (i in 1:N) if (wdata[i,j] != -1) {

wdata[i,j] ~ normal(alpha[j] + beta[j]*Z[i], 1/tau[j]);

}

}

}

E Additional illustrative cases of different IRT models
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Figure E.1: Different models of freedom from political killings in Germany
Fixed discrimination Varying discrimination
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Figure E.2: Different models of freedom from political killings in Canada
Fixed discrimination Varying discrimination
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Figure E.3: Different IRT models of freedom from political killings in Turkey
Fixed discrimination Varying discrimination
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F Simulation algorithm

1. Estimate true value ξ for country-year ct by taking the mean of expert codings for each
country-year, then normalizing across country-years.

2. Simulate reliability and agreement values

• Simulate reliability β for expert r

– No variation βr = β = 1

– Medium variation: βr ∼ N (1, 0.5)

– High variation: βr ∼ N (1, 1)

• Simulate expert agreement parameters

– Perfect agreement

∗ τr;1,2,3,4 = γ1,2,3,4 = (−0.88,−0.31, 0.14, 0.83)

∗ κr = κ = 0

– Simulate intercept parameter κ for expert r

(a) Simulate κ for main country-coded cr

∗ Medium variation: κcr ∼ N (0, 0.5)

∗ High variation: κcr ∼ N (0, 1)

(b) Simulate κ for expert r

∗ Medium variation: κr ∼ N (κcr , 0.5)

∗ High variation: κr ∼ N (κcr , 1)

(c) Create expert thresholds with formula τr,k = γk + κr

– Simulate threshold parameters τ for expert r and threshold k, κ = 0

(a) Simulate τ for main country-coded cr

∗ Medium variation: τ crk ∼ N (γk, 0.25)

∗ High variation: τ crk ∼ N (γk, 1)

(b) Order τ crk
(c) Simulate τ for expert r

∗ Medium variation: τr,k ∼ N (τ crk , 0.25)

∗ High variation: τr,k ∼ N (τ crk , 1)

(d) Order τr,k

– Simulate truncated threshold parameters τ for expert r and threshold k, κ = 0

(a) Assign main country-coded cr indicator ζcr ∼ Bernoulli(0.5) for positive
or negative truncation

(b) Simulate τ for main country-coded cr

∗ Medium variation: τ crk ∼ N (γk, 0.25)

· If ζcr = 1, min(τr,k) = γk

· If ζcr = 0, max(τr,k) = γk

∗ High variation: τ crk ∼ N (γk, 1), truncated as with medium variation
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(c) Order τ crk
(d) Assign expert r indicator ζr ∼ Bernoulli(0.5) for positive or negative

truncation

(e) Simulate τ for expert r

∗ Medium variation: τr,k ∼ N (τ crk , 0.25)

· If ζr = 1, min(τk) = τ crk
· If ζr = 0, max(τk) = τ crk

∗ High variation: τr,k ∼ N (τ crk , 1), truncated as with medium variation

(f) Order τr,k

3. Create perceived latent values λ for expert r and country year ct with equation λrct =
βrξct

4. Observed score yrct ∼ Categorical(pkrct), where pkrct = φ(τr,k − λrct)− φ(τr,k−1 − λrct)
and φ is the CDF of a normal distribution

• Simulate observed scores for all permutations of β (no variation, medium varia-
tion, and high variation) and τ (perfect agreement, medium and high intercept
variation, medium and high threshold variance, and medium and high truncated
threshold variance).

• Total number of permutations of simulated data: 3× (1 + 2 + 2 + 2) = 21

5. Repeat thrice to create three unique data sets with 21 combinations

G Additional model fit figures

G.1 Additional MSE figures

G.1.1 Models with saturated data, all possible bridging

Figure G.1: MSE estimates across simulations with no DIF, using simulated data with all
possible bridging.

Discrimination = 1 Discrimination ∼ N (1, 0.5) Discrimination ∼ N (1, 1)
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Figure G.2: MSE estimates across simulations with fixed discrimination, using saturated
data with all possible bridging.

Low DIF High DIF

T
h
re

sh
ol

d

●

●

●

●

●

●

●

●

●

No DIF

Threshold DIF

Intercept DIF

Aldrich−McKelvey

Model Reliability
● Fixed

Varying ●

●

●

●

●

●

●

●

●

T
ru

n
ca

te
d

th
re

sh
ol

d

●

●

●

●

●

●

●

●

●

No DIF

Threshold DIF

Intercept DIF

Aldrich−McKelvey

●

●

●

●

●

●

●

●

●

In
te

rc
ep

t

●

●

●

●

●

●

●

●

●

No DIF

Threshold DIF

Intercept DIF

Aldrich−McKelvey

0.25 0.50 0.75

●

●

●

●

●

●

●

●

●

0.25 0.50 0.75

G.1.2 Models with saturated data, no bridging

20



Figure G.3: Saturated data with no bridging
Discrimination = 1 Discrimination ∼ N (0, 0.5) Discrimination ∼ N (0, 1)
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G.2 Pearson correlation estimates across simulations
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Figure G.4: Data with V–Dem structure
Discrimination = 1 Discrimination ∼ N (0, 0.5) Discrimination ∼ N (0, 1)
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Figure G.5: Saturated data with no bridging
Discrimination = 1 Discrimination ∼ N (0, 0.5) Discrimination ∼ N (0, 1)
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Figure G.6: Saturated data with all possible bridging
Discrimination = 1 Discrimination ∼ N (0, 0.5) Discrimination ∼ N (0, 1)
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G.3 Kendall correlation estimates across simulations
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Figure G.7: Data with V–Dem structure
Discrimination = 1 Discrimination ∼ N (0, 0.5) Discrimination ∼ N (0, 1)
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Figure G.8: Saturated data with no bridging
Discrimination = 1 Discrimination ∼ N (0, 0.5) Discrimination ∼ N (0, 1)
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Figure G.9: Saturated data with all possible bridging
Discrimination = 1 Discrimination ∼ N (0, 0.5) Discrimination ∼ N (0, 1)
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G.4 HPD estimates across simulations
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Figure G.10: Data with V–Dem structure
Discrimination = 1 Discrimination ∼ N (0, 0.5) Discrimination ∼ N (0, 1)
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Figure G.11: Saturated data with no bridging
Discrimination = 1 Discrimination ∼ N (0, 0.5) Discrimination ∼ N (0, 1)
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Figure G.12: Saturated data with all possible bridging
Discrimination = 1 Discrimination ∼ N (0, 0.5) Discrimination ∼ N (0, 1)
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H Comparison of Cauchy and uniform prior distribu-

tions, V–Dem bridging structure
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